

PV Master APP SEMS Portal APP

江苏固德威电源科技股份有限公司

中国 苏州 高新区紫金路90号 400-998-1212 www.goodwe.com

service@goodwe.com

ES系列用户手册

储能逆变器

目录

01	简介	
	1.1 运行模式简介	01
	1.2 安全与警告	02
	1.3 产品简介	04
02	安装说明	
	2.1 错误安装示例	05
	2.2 包装清单	0.5
	2.3 安装	06
	2.3.1 选择安装位置	06
	2.3.2 安装	07
	2.4 电气连接 ·····	09
	2.4.1 连接直流输入线	09
	2.4.2 连接电池线	10
	2.4.3 连接并网和离网	11
	2.4.4 连接智能电表和CT	15
	2.5 连接DRED和远程关断	16
	2.6 连接WiFi模块	18
	2.7 连接接地故障报警	18
	2.8 小固云窗	18
03	系统操作	
		0.4
	3.1 Wi-Fi配置 ·····	
	3.2 PV Master App	
	3.3 CEI自动测试功能	22
	3.4 上下电顺序	22
04	其他	
	4.1 故障信息 · · · · · · · · · · · · · · · · · · ·	23
	4.2 故障解决 · · · · · · · · · · · · · · · · · · ·	25
	4.3 免责声明	30
	4.4 技术参数	31
	4.5 其他测试	33
	4.6 避免危险快速检查清单	33

简介

固德威ES系列逆变器,也称为混合或双向光伏逆变器,与光伏、电池、负载和电网共同组成太阳能 系统进行能量管理。 逆变器不可应用于多相组合应用场景。

光伏系统产生的能量可用于优化家庭用电结构,多余的能量给电池充电,剩余的能量输出到电网。 当光伏能量不足以满足自用需求时,电池应放电以支持负载。如果电池电量不足,负载将由电网供

注:

产品简介部分介绍了ES系统的常见运行模式。用户可在 PV Master APP上根据系统布局调整逆变器运行模式。 ES系统的一般运行模式如下:

1.1 运行模式简介

01

根据不同的系统配置和布局情况,通常ES储能系统包含下列运行模式。

模式一

光伏系统产生的能力主要用于自我消耗,多余的能量用于 给电池充电,其余的输出到电网。

模式三

电网断电时,系统自动切换至back-up模式,光伏侧和电 池侧可为back-up负载供电。

模式二

当光伏侧未输入能量且电池电量充足时,电池与电网将同 时给负载供电。

模式四

电网可给电池充电,可通过PV Master 软件设置充电时间 和功率。

1.2 安全与警告

固德威技术股份有限公司(简称固德威)ES系列逆变器严格遵守相关安全规范进行产品设计和测试 。在安装、操作或维护过程中,请仔细阅读并遵守逆变器或用户手册上的所有说明和注意事项,任 何不当操作都可能造成人身或财产损失。

符号定义解释

警告!

不遵守本手册中的警告标示可能会导致人身伤害。

高压和电击危险!

表面高温!

产品部件可循环。

此面朝上! 运输、处理和储存时箭头必须始终朝上。

禁止堆叠超过六层。

设备不可当做生活垃圾处理,请根据当地的法律法规处理设备,或者寄回给设备厂商。

易碎 - 小心处理包装/产品,切勿倾倒或悬挂。

请参阅操作说明。

保持干燥! 请存放于干燥有防护的地方,避免过度潮湿。

グ 逆变器断电后,内部元器件放电存在延迟,请等待5分钟至设备完全放电。

安全警告

任何安装和操作都必须由合格的电工按照当地电网或公司的标准、接线规则或要求(如澳大利亚的 AS 4777 和 AS/NZS 3000)进行。

在对逆变器进行任何接线或电气操作之前,必须将所有电池和交流电源与逆变器断开至少5分钟,确保逆变器完全隔离以避免触电。

逆变器在运行过程中表面温度可能会超过60℃,因此请确保其已冷却后再接触,并将逆变器 放置在儿童接触不到的地方。

未经制造商授权请勿打开逆变器外壳或更换任何部件,否则逆变器的保修承诺将失效。

请遵循本用户手册中的说明使用和操作逆变器,否则可能会影响逆变器的保护设计并使逆变器的保修承诺失效。

请采用适当的方法保护逆变器免受静电损坏,任何由静电引起的损坏制造商均不负责。

逆变器侧的 PV 负极 (PV-) 和电池负极 (BAT-) 默认不接地,请勿将PV 负极接地。

逆变器上使用的光伏组件必须满足IEC61730A级,并且光伏组串/阵列的总开路电压低于逆变器的最大额定直流输入电压。任何因光伏过电压造成的损坏均不在保修范围内。

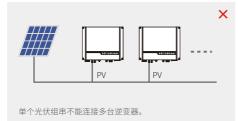
内置RCMU的逆变器将排除直流剩余电流至6mA的可能性,因此在系统中可以使用A型外部RCD(≥30mA)。

在澳大利亚,逆变器内部开关零线不完整,需要增加外部连接,如第 16 页的系统连接图中的 澳大利亚部分。

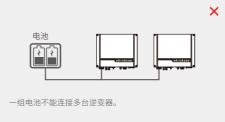
在澳大利亚,配电箱离网侧的输出端应标有"主开关UPS电源",配电箱中普通负载侧的输出端应标有"主开关逆变电源"。

1.3 产品简介


	_			_					_																					_	_	
		FAULT				WiFi					COM M				ENEBGY			RATTERY			SOLAR			BACK-UP			SYSTEM		指示灯		SYSTEM BACK-L	
		E				F				F							F	E			E								状态		P SOLAR BATT	储能LE
	灭 = 无故障	单次闪烁=BACK-UP过载/减轻负载	常売=故障	灭=WiFi断开	四次闪烁 = WIFI服务器问题	两次闪烁=WiFi未连接至路由器	单次闪烁=WFI正在重置	常英=WiFi正常,已连接	灭= 未并网,或系统未工作	两次闪烁 = 向电网供电/卖出	单次闪烁=向电网供电/均衡	常亮 = 从电网买电/买入	灭=电网断开	闪烁 = 电网正常,未并网	常亮=电网正常,已并网	灭= 电池斯开	两次闪烁=电量低/SOC低	单次闪烁=电池放电中	常亮=电池充电中	灭=光伏输入#1和#2未工作	两次闪烁 = 光伏输入#2 正常 /#1未工作	单次闪烁=光伏输入#1 正常 /#2未工作	常亮=光伏输入#1和#2正常	灭=BACK-UP功能已关闭	常亮 = BACK-UP 功能已就绪	灭=系统未工作	闪烁= 系统正启动	常亮=系统已就绪	解释		Y GRID ENERGY WIFI	储能LED指示灯
智能电表通讯线			BMS闽代教		连接至智能电表		电池注接 端 口		直流输入端口 DRED 连接至电池		+	WiFi模块	JV. 組RO48OJ信 L						并列端口			@ O · · · · · · · · · · · · · · · · · ·	man))									LED指示灯


04

06


2.1 错误安装示例

请避免采取下列安装方式,否则可能损坏系统或逆变器。

2.2 包装清单

收到逆变器后,请检查下图所示部件是否有缺失或损坏。

模块

2.3 安装

2.3.1 选择安装位置

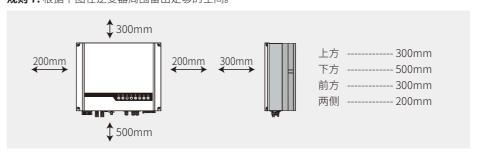
为了保护逆变器并且方便维护,请根据以下规则慎重选择逆变器的安装位置: 确保系统的任意部分不会阻挡开关和断路器,使其无法与直流和交流电源断开。

规则 1. 将逆变器安装在能承受逆变器尺寸和重量的坚固表面上。

规则 2. 逆变器应垂直安装或倾斜小于 15°。

规则 3. 环境温度应低于 45℃。

(环境温度过高会导致逆变器功率降额。)


规则 4. 逆变器应安装在有遮挡的地方,以避免阳光直射或恶劣天气(如雪、雨、闪电等)影响。

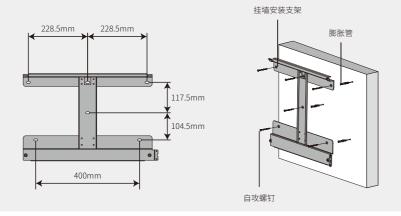
规则 5. 逆变器应安装在视线水平位置,以方便维护。

规则 6. 逆变器上的产品标签应在安装后清晰可见。

规则 7. 根据下图在逆变器周围留出足够的空间。

逆变器不能安装在易燃、易爆或强电磁设备附近。

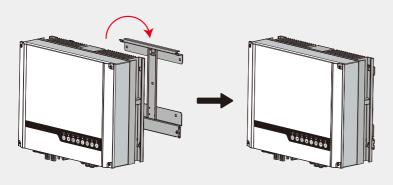
切记产品较重,请小心从包装中取出。


逆变器仅适合安装在混凝土等不可燃表面上。

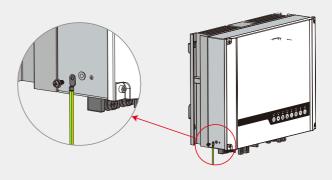
步骤 1

请以安装支架为模板,在合适的位置钻4个孔(直径10mm,深80mm)。

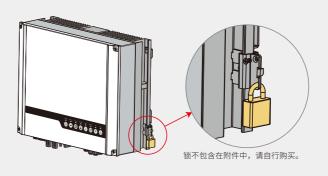
用附件盒中的膨胀螺栓将安装支架固定在墙上。


注意:墙体的承载力必须大于25kg,否则逆变器可能会掉落。

步骤 2


07

抓住逆变器两侧的散热片抬起逆变器,放置在安装支架上。


Step 3

连接接地线缆至电网侧的接地板。

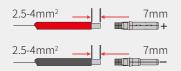
步骤 4

如果有必要,请将逆变器上锁防盗。

08

2.4 电气连接

2.4.1 连接直流输入线


连接光伏板/串与逆变器之前,请确保已满足下列要求:

- 光伏组串的总短路电流不得超过逆变器的最大直流电流。
- •为避免电击危险,光伏组串对地的最小绝缘电阻必须超过19.33kΩ。
- 光伏组串未接地。
- •正确使用附件盒中的直流连接器。(电池连接器与直流连接器类似,使用前请确认。)

注意: 附件盒中有MC4或QC4.10或Amphenol连接器。具体连接方式如下所示。

步骤1

准备直流输入线缆和直流连接器。

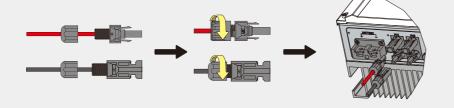
注意:

09

- 1.请使用附件盒中的直流连接器。
- 2.直流线缆规格为标准2.5-4mm²。

步骤 2

压接直流线缆。


注意:

- 1. 直流线缆必须压接到位。
- 2.若使用Amphenol连接器,切忌压到限位扣。
- 3.压接完成的线插入连接器时,会听到咔哒 声。

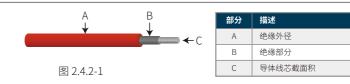
步骤3

拧上盖子并将连接器插入逆变器侧。

注意:连接器插入PV端子时,会听到咔哒声。

请确保光伏组串的极性连接正确,否则会损坏逆变器。

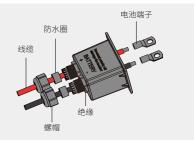
2.4.2 连接电池线


请注意电击危险或化学危险。

若电池内部没有内置直流断路器,请确保有外部直流断路器(≥125A)连接。

在连接电池与逆变器之前,请确保断路器已关闭且电池标称电压符合 ES 系列的规格。确保 逆变器与光伏和交流电源完全隔离。

锂电池(组)容量应至少为50Ah。电池线缆要求如图2.4.2-1所示。


电池线连接步骤

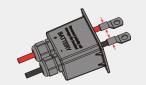
步骤1

准备电池线及附件,将电池电源线穿过电池盖。

注意:

- 1. 请使用附件盒中的附件。
- 2. 电池电源线规格应为20-35mm²。

值

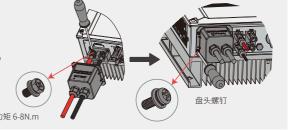

10-14 mm

20-35 mm²

步骤 2

制作电池端子

- 剥去电缆外皮,露出10mm长的金属芯。
- 使用专用压接器将电池端子压紧。



步骤3

将电池端子连接到逆变器上。

注意:

请确保电池的极性 (+/-) 没有接反。

* 兼容锂电池 (LG / PYLON / BYD / GCL / DYNESS / ALPHA) 的连接方式请参考 ES 快速安装说明中的电池连接方式。

电池保护

在以下任何条件下, 电池都将出于保护目的对充/放电限流:

- 电池SOC 低于I-DOD (放电深度)。
- 电池电压低于放电电压。
- 电池过热保护。
- 锂电池的电池通讯异常。
- 锂电池BMS限制。

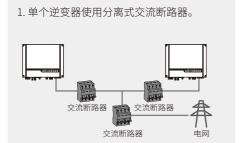
充放电限流保护发生时:

- 在并网模式下, 电池充放电操作可能会异常。
- •在离网模式下,离网电源将关闭。

注意:

11

- •在离网模式下,如果离网电源因电池、电池SOC或电压过低而关闭,光伏侧产生的能量将全部用于为电池充电,直到电池SOC达到40% +(1-DOD)/2,激活离网电源。
- •在并网模式和离网模式下,电池受到DOD和放电电压的过放电保护。
- •设置电池DOD可防止逆变器释放电池备用电力。一旦达到DOD设定值,负载将仅由光伏侧或电网支持供电。如果连续几天电池充电量很少甚至没充电,电池可能会继续自耗能量以维持与逆变器的通信。不同电池制造商生产的电池有所不同,但是,如果电池的SOC达到一定水平,逆变器会促使SOC升高。这种保护机制可防止电池SOC降至0%。


2.4.3 连接并网和离网端

如需在并网连接逆变器时隔离电网与逆变器,请增加外部交流断路器。

并网交流断路器的要求如下所示。

逆变器型号	交流断路器规格
GW3648D-ES	32A / 230V (如 DZ47-60 C32)
GW5048D-ES	40A / 230V (如 DZ47-60 C40)

注意:如果离网侧未连接交流断路器时发生电气短路,逆变器会被损坏。

2. 在交流侧, 逆变器和电网之间应在连接负载前连接单独的断路器。

并网侧和离网侧都需要连接交流线缆。

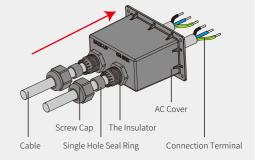
在连接交流线缆之前,请确保逆变器与直流或交流电源完全隔离。

注意:

- 1. N线为蓝色, L线为黑色或棕色(棕色为首选), 保护地线为黄绿色。
- 2.交流线缆的保护地线应比N线和L线长,因此当交流线缆滑脱或被拔出时,保护接地导体可最后承受应变。

步骤1

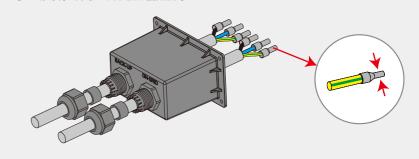
根据右侧表格准备交流线缆和端子。

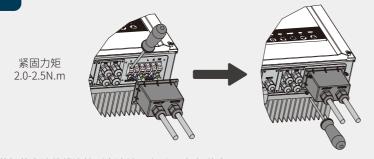


	描述	数值
А	外径	13-18 mm
В	剥离线缆长度	20-25 mm
С	导体长度	7-9 mm
D	导体横截面积	4-6 mm ²

步骤 2

如图所示将交流线缆穿过端子保护罩。


注意: 请使用附件盒中的端子。


步骤3

在线缆导体芯上压接6个端子。

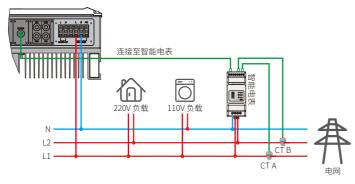
注意:请勿将线缆护套锁定在连接器内。

步骤 4

1. 将组装好的交流线缆连接到交流端子上, 紧固扭矩约为 2.0-2.5N.m。

注意:连接并网端子前先连接离网端子,并确保连接到正确的一侧。

2. 锁上盖子并拧紧盖子。


特殊可调节设置

用户可以通过逆变器的特殊固件设置跳脱点、跳脱时间、重连时间、QU曲线和PU曲线等功能。如需此特殊固件和调整方法,请联系售后。

分相电网系统的连接

13

在分相电网系统中,有一种解决方案可以让逆变器在并网条件下工作。详情请查看官网方案。

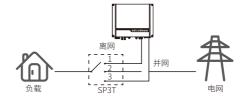
离网功能声明

ES逆变器的离网输出具有过载能力。详情请参考ES系列逆变器技术参数部分。

并目逆变器在高温环境下具有自我保护降额功能。

- 1. 对于储能逆变器 (EH、EM、ES 和 ET 系列),标准光伏安装通常需要连接逆变器与光伏面板及电池。在系统未连接电池的情况下,强烈建议不要使用离网功能。因不遵守本声明导致的任何后果,均不在制造商质保和责任范围内。
- 2、一般情况下,离网切换时间小于10ms(考虑UPS的最低条件)。但是,一些外部因素可能会导致系统不能启动离网模式。因此,我们建议用户充分了解情况并按照以下说明进行操作:

- •若负载需要稳定的电源供应来保障可靠运行,请勿使用此功能。
- 请勿连接可能超过最大离网容量的负载。
- •尽量避免那些可能产生很高启动电流浪涌的负载,如变频空调、大功率泵等。
- •由于电池本身的状况,电池电流可能会受到一些因素的限制,包括但不限于温度、天气等。


可使用的负载如下:

ES系列逆变器离网侧可为负载提供4600VA的持续输出或6900VA的短时输出(不超过10秒)。逆变器还具有在高环境温度下降额的自我保护机制。

- 感性负载:单个感性负载最大1.5KVA, 总感性负载功率最大2.5KVA。
- 容性负载: 总容性负载(如电脑、开关电源等)功率≤3.0KVA。 (不接受任何启动时具有高浪涌电流的负载)

注意:

为方便维护,请在离网侧和并网侧安装一个SP3T开关。安装SP3T开关后,可通过调节开关改变负载供电方式,如保持默认状态、电网供电、离网供电。

- 1. 离网负载由离网侧供电。
- 2. 离网负载处干隔离状态。
- 3. 离网负载由电网侧供电。

离网过载保护声明

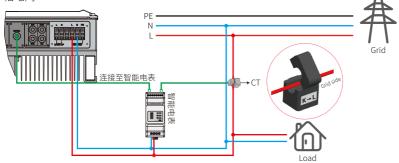
过载保护触发时逆变器将自行重启。如果过载保护重复触发,重启的准备时间会越来越长(最多一小时)。可采取以下步骤立即重启逆变器。

在最大限制内降低离网负载功率。

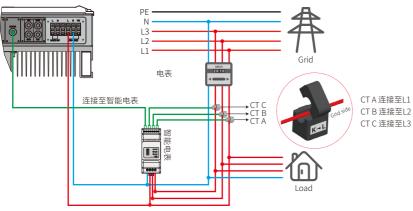
选择 PV Master App → 高级设置 → 重置离网过载历史记录。

2.4.4 连接智能电表和CT

在连接智能电表和CT之前,请确保交流线缆与交流电源完全隔离。


产品包装内带CT的智能电表是在安装ES系统时必须安装的,可用于检测电网电压、电流方向和大小,进而通过RS485通讯指示FS逆变器的运行状况。

注意:


- 1. 带CT的智能电表已经完成配置,请不要更改电表上的任何设置。
- 2. 一台智能电表只能用于一台ES系列逆变器。
- 3. 一台智能电表必须使用三个CT,而且CT必须与智能电表电源线连接在同一相上。

智能电表 & CT组网图

• 单相电网

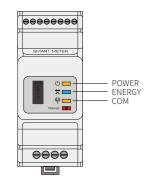
• 三相电网

注意:

15

- 1. 请使用产品包装中带有3个CT的智能电表。
- 2. CT线缆默认为3m,最大可延长至5m。
- 3. 智能电表通讯线缆(RJ45)附在逆变器上("To Smart Meter"线缆),最长可延长至100m,且必须使用标准的RJ45线缆和插头,如下所示:

ES系列逆变器每个端口的详细PIN脚功能

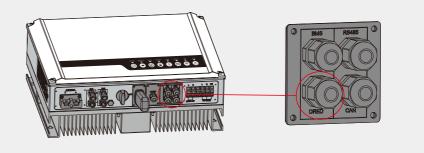

BMS:默认配置CAN通讯。如果使用485通讯,请联系售后更换相应的通讯线。

序号	颜色	BMS功能	智能电表功能	EMS
1	橙白	485_A2	NC	485_A
2	橙色	NC	NC	485_B
3	绿白	485_B2	485_B1	485_A
4	蓝色	CAN_H	NC	NC
5	蓝白	CAN_L	NC	NC
6	绿	NC	485_A1	485_B
7	棕白	NC	485_B1	NC
8	棕色	NC	485_A1	NC

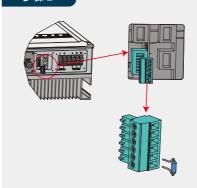
智能电表指示灯

STATUS	灭	亮	闪烁			
POWER	未工作	工作	/			
ENERGY	/	输入	输出			
СОМ	转移数据至逆变器时闪烁一次					

2.5 DRED和远程关断连接


DRED (Demand response enable device) 用于澳大利亚和新西兰 (在欧洲国家也用作远程关机功能),符合澳大利亚和新西兰 (或欧洲国家) 的安全要求。逆变器集成了控制逻辑,并为 DRED 提供了接口。DRED不是由逆变器制造商提供的。

详细连接如下图所示:


步骤1

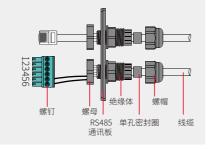
从逆变器上拧下此板。

注意:DRED 应如图所示通过"DRED Port"连接。

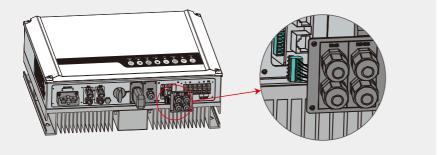
步骤2

- 1. 拔下6PIN端子,拆下上面的电阻。
- 2. 将电阻拔出,留下6PIN端子以备下一步使用。 注:逆变器中的6PIN端子与DRED功能相同。如果 未连接外部设备,请将其留在逆变器中。

步骤 3-1 连接DRED

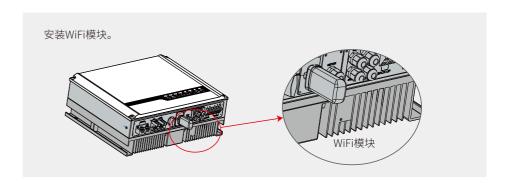

- 1. 将 DRED线缆穿过面板。
- 2. 在6PIN端子上连接DRED线缆。各连接位置的作用

步骤 3-2 连接远程关断


- 1. 将线缆穿过面板。
- 2. 分别从5号和6号孔接线。

NO.	5	6
Function	REFGEN	COM / DRMO

步骤4


将 DRED 端子连接到逆变器的正确位置。

2.6 WiFi模块连接

WiFi通讯功能仅适用于WiFi模块,请参考下图安装WiFi模块。

详细配置说明可参考本手册"3.1 配置WiFi"或附件中的"ES快速安装说明"。

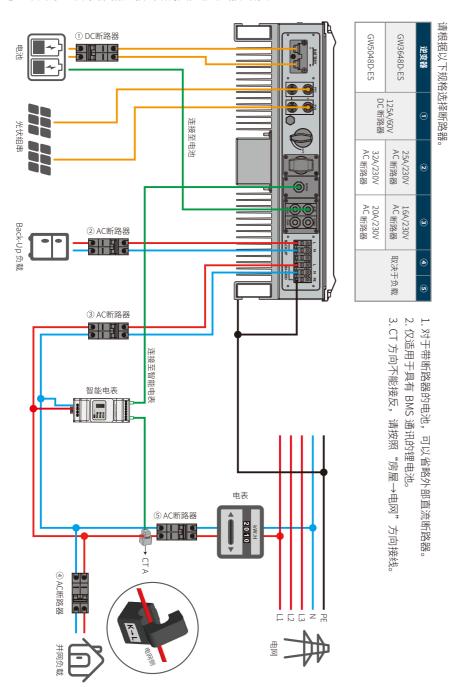
2.7 接地故障报警连接

ES系列逆变器符合IEC 62109-2 13.9标准要求。故障发生时,逆变器的故障指示灯将亮起,系统会将故 障信息发送至客户电子邮箱。

为方便维护,请将逆变器安装在视线水平位置。

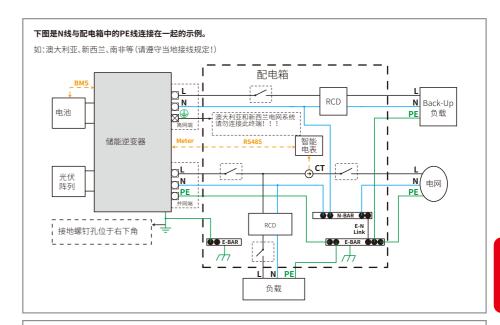
2.8 小固云窗

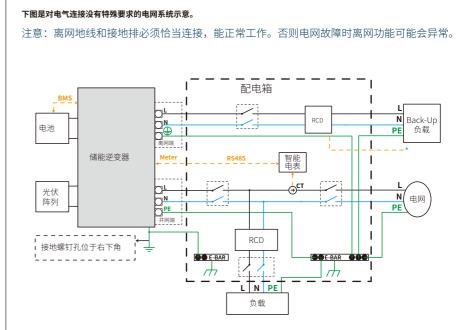
小固云窗是一个在线监控系统。完成通信连接后,请访问www.sems.com.cn或通过 扫描二维码下载app来监控您的光伏电站和设备。



请联系售后获取更多小固云窗的操作方法,。

ES系列储能逆变器接线系统


19


注意:本图为ES系列逆变器的接线结构图,非电气接线标准。

系统接线图

注意:根据澳大利亚安规,并网侧和离网侧的零线必须连接在一起,否则离网功能不能正常使用。

系统操作

3.1 配置Wi-Fi

此章节介绍了如何在网页上配置WiFi,您也可以使用 PV Master App 完成配置。Wi-Fi 配置对于在线 监控和维护是绝对必要的。

准备:

- 1. 逆变器必须由电池或电网供电。
- 2. 需要可以访问网站 www.sems.com.cn 的路由器。

步骤1

- 1. 将Solar-WiFi*连接至您的电脑或智能手机(*为逆变器 序列号的后8位);密码:12345678。
- 2. 打开浏览器登录10.10.100.253。用户名:admin;密码: admin
- 3. 然后点击"确定"。

步骤2

- 1. 单击"开始向导"以选择您的路由器。
- 2. 然后点击"下一步"。

步骤3

- 1. 填写路由器的密码, 然后点击"下一步"。
- 2. 点击"Complete"。

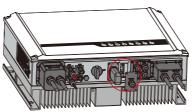
注意:

动添加无线网络。

- 1. 请确保密码、加密方法/算法与路由器的相同。
- 2. 如果一切正常,逆变器上的 Wi-Fi指示灯将从双闪变为四闪再到常亮状态,这表示 Wi-Fi 已成功连 接到服务器。

3. 也可以在PV Master App上进行Wi-Fi配置,详情请查看PV Master app。

重置和重载Wi-Fi


Wi-Fi 重置意味着重启 Wi-Fi 模块, Wi-Fi 设置将被重新处理并自动保存。Wi-Fi重载是指将Wi-Fi模块恢 复为默认出厂设置。

Wi-Fi 重载

完成。

长按复位键(大干3s)。

Wi-Fi指示灯将持续双闪,直到Wi-Fi再次配置

Wi-Fi 重置

短按复位键。

Wi-Fi指示灯将闪烁几秒钟。

注意:

- Wi-Fi 重置和重载功能仅在以下情况下使用: 1. Wi-Fi断开网络连接或无法成功连接到PV Master app。
- 2. 找不到 "Solar-WiFi信号"或有其他Wi-Fi配置问题。
- 3. 如果Wi-Fi监控正常,请不要使用此按钮。
- 4.如需更换模块,请使用配备的解锁工具。

3.2 PV Master App

PV Master是一款用于储能逆变器的外部监控/配置应用程序,适用于Android 和iOS系统的智能手机或平板电脑。主要功能如下:

- 1. 配置系统, 使其满足客户需求。
- 2. 监控和检查储能系统的性能。

在Google Play Store/Apple App Store中下载PV Master App,或者扫描本用 户手册背面的二维码下载。

如需PV Master用户手册,请从官网下载。

对于澳大利亚客户,为符合AS/NZS 4777.2:2020要求,请从Australia Region A/B/C 中选择安规国家/区域,具体选择区域,请联系当地电网运营商查看。 设置安规国家/区域后, 逆变系统中的一些参数会根据相应的安规生效, 如 PU曲线、QU曲线、跳闸保护等,如需更改配置参数请参考PV Master用户手册。

3.3 CEI自动测试功能

根据意大利安规要求, PV Master App中集成了CEI光伏自动测试功能, 该功能 的详细说明请参考PV Master用户手册。

3.4 上下电顺序

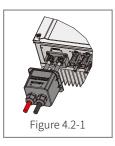
直流开关用于切断光伏输入电源,而电池上配备的断路器用于切断电池电源。 关闭逆变器时,请断开逆变器直流开关和电池直流断路器。 整流后要启动逆变器时,请连接逆变器直流开关和电池直流断路器。

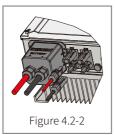
22

Wi-Fi重载按钮

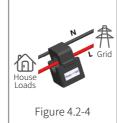
PV Master 用户手册

4.1 故障信息

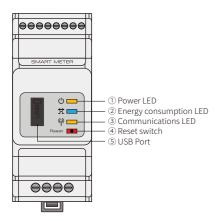

故障发生时以下报错信息会通过PV Mater或邮件发送。


报错信息	解释	原因	解决方案					
电网丢失故障 Utility Loss	电网电源不可用(掉电或并网失败)	逆变器未检测到电网信息。	 用万用表检查交流侧是否有电压,并确保电网电源可用。 确保交流电缆连接牢固。 如果一切正常,请尝试断开交流断路器并在5分钟后重新连接。 					
电网电压异常 VAC Failure	电网电压超出允许范围	逆变器检测到交流电压超出安规要求的正常范围。	 确保逆变器的安规国家设置正确。 使用万用表检查交流断路器侧L线和N线之间的交流电压是否在正常范围内。 若交流电压较高,请确保交流线缆长度不过长,规格符合用户手册上的要求。 若交流电压较低,请确保交流线缆接线良好,且护套没有压入交流端子。 确保您所在地区的电网电压稳定且在正常范围内。 					
电网频率异常 FAC Failure	电网频率超出允许范围	逆变器检测到电网频率超出安规要求的正常范围。	1. 确保逆变器的安规国家设置正确。 2. 如果安规国家设置正确,请检查逆变器的交流频率(Fac)是否在正常范围内。 3. 如果FAC故障很少出现并且很快就解决了,可能是偶尔的电网频率不稳定造成的。					
机器温度过高故障 Over Temperature	逆变器内部温度过高	逆变器工作环境温度过高。	1. 尽量降低周围温度。 2. 确保遵循用户手册中的安装说明。 3. 尝试关闭逆变器15分钟,然后再次启动。					
面板绝缘阻抗低故障 Isolation Failure	隔离失败的原因可能有多种,如光伏板接 地不良、直流电缆断裂、光伏板老化或周 围湿度较大等。	隔离失败的原因可能有多种,如光伏板接地不良、直流电缆断裂、光伏板老化或周围湿度较大等。	1. 用万用表检查地面与逆变器框架之间的电阻是否接近于零。如果不是,请确保接线良好。 2. 如果湿度过高,可能会出现隔离故障。 3. 检查PVI+/PV2+/BAT+/PV-对地电阻。如果电阻低于33.3k,请检查系统接线。 4. 尝试重启逆变器,检查故障是否仍然存在。如果故障消失,则说明是偶发的情况,否则请联系售后。					
漏电流高故障 Ground Failure	接地漏电流过高	接地故障可能由交流侧N线未接好或周围湿度较大等多种原因引起。	用万用表检查地面与逆变器框架之间是否有电压。一般情况下,电压应接近0V。如果有电压,则说明交流侧的N线和地线没有连接好。如果此故障发生在空气湿度较高的清晨/黎明/雨天,并很快恢复,应该是正常的。					
继电器自检异常 Relay Check Failure	继电器故障自检	N线和地线在交流侧末连接好或只是偶尔故障。	用万用表检查交流侧N线和地线之间是否有高电压。一般情况下,电压应低于10V。如果电压高于10V,则说明交流侧N线和地线未连接好,或需要重启逆变器。					
输出电流直流分量过高 DC Injection High	/	逆变器检测到交流输出中有较高的直流分量。	尝试重新启动逆变器,检查故障是否仍然存在。如果故障不存在,说明这只是偶尔的情况。否则,请立即联系售后。					
内部存储故障 EEPROM R/W Failure	· 由外部路磁场等引起。		尝试重新启动逆变器,检查故障是否仍然存在。如果故障不存在,说明这只是偶尔的情况。否则,请立即联系售后。					
内部通信失败 SPI Failure	内部通信失败 内部涌讯失败 中外部强磁场等引起。		尝试重新启动逆变器,检查故障是否仍然存在。如果故障不存在,说明这只是偶尔的情况。否则,请立即联系售后。					
直流母线过高 DC Bus High	BUS电压过高	/	尝试重新启动逆变器,检查故障是否仍然存在。如果故障不存在,说明这只是偶尔的情况。否则,请立即联系售后。					
Back-Up过载 Back-Up Over Load	Back-up侧过载	总back-up负载功率高于back-up额定输出功率。	减少离网负载以确保总负载功率低于离网额定输出功率(请参阅第 11 页)。					

4.2 故障解决


交流上电前检查

- •电池连接:确保连接ES与电池时极性(+/-)连接正确,见图4.2-1。
- PV输入连接: 确保连接ES与PV时极性 (+/-) 连接正确, 参见图 4.2-2。
- 并网和离网连接:确保连接并网侧与电网和离网侧与负载时极性连接正确, L线和N线按顺序连接, 见 图4.2-3。
- 智能电表和CT连接:确保智能电表和CT连接在家庭负载和电网之间,并遵循CT上智能电表的方向标志,见图4.2-4。



启动和交流上电检查

25

电池设置、BMS 通信和安全国家/地区:

连接Solar-WiFi*后(*为逆变器序列号的后8个字符),请检查PV Master App中的参数以确保选择的电池类型与您安装的电池类型相同,并且"安规国家"选择正确。如果设置不正确,请在"设置"中设置正确。

注意:对于兼容的锂电池,选择正确的电池厂商后,BMS状态会显示"正常"。

操作中的问题

ES不能仅使用电池启动

解决方案:

确保电池电压高于48V,否则电池无法启动ES。

ES不能仅使用PV启动

解决方案:

- 1. 确保光伏电压高于150V, 如需进入并网模式, 电压需为200V。
- 2. 确保连接ES和PV电池板时极性(+/-)没有接反。

ES储能逆变器不放电或没有PV或PV低于负载功率时输出

解决方案:

- 1. 检查ES和智能电表之间的通信是否正常。
- 2 确保负载功率高于150W。

除非负载功率高于150W, 否则电池不会持续放电;

若电表功率高于150W时电池不放电,请检查智能电表和CT的接线和方向;

- 3.确保放电状态(SOC)高于1-DOD(放电深度)。如果电池放电到1-DOD以下,只有在SOC充电到(20%+1-DOD)/2且SOC>105%-DOD时才会再次放电。如果需要立即放电,请重新启动电池。
- 4.在APP上查看是否已经设置了充电时间,因为在充电期间,电池不会放电。电池会在充放电时间一致的情况下优先充电。

PV功率高于负载功率时电池不充电

解决方案:

- 1.若是铅酸电池,请检查PV Master中的充电电压是否设置正确。如果电池电压达到充电电压,电池将无法充电。
- 2.检查PV Master中的放电时间设置。
- 3. 检查电池是否充满电,或电池电压是否达到充电电压。

电池充电或放电时功率波动高

解决方案:

- 1、检查负载功率是否有波动。
- 2. 检查PV功率是否有波动。

电池不充电

解决方案:

- 1. 若是锂电池, 请检查PV Master, 确保BMS通信正常。
- 2. 检查CT连接位置和方向是否正确,可参考用户手册第15页。
- 3. 检查总负载功率是否远高于PV功率。

疑难解答(Q&A)

关于Wi-Fi配置

问:为什么我在移动设备上找不到Solar-WiFi*信号?

答:通常情况下,逆变器上电后即可搜索到 Solar-WiFi* 信号。但是当ES连接到互联网时,Solar-WiFi信号会消失。如果需要更改设置,请连接到路由器进行更改。如果找不到WiFi信号或无法连接路由器,请参阅ES用户手册第18页尝试重新加载WiFi。

问:为什么我的手机无法连接 Solar-WiFi* 信号?

答:WiFi模块一次只能连接一台设备。如果WiFi信号由于某种原因已经与另一台设备连接,则您无法连接到该信号。

问:为什么选择正确的路由器热点并输入正确的密码后,WiFi模块无法连接网络?

答:有可能是热点密码中有模块不支持的特殊字符。请将密码修改为仅包含阿拉伯数字或大写/小写字母。

关于电池操作

27

问:为什么电网不可用时电池不放电,而电网可用时却能正常放电?

答:在App上开启离网输出和离网功能,使电池在离网模式下放电。

问:为什么电池SOC突然跳到95%?

答:一般是锂电池BMS通讯失败。如果电池进入浮充模式,SOC将自动重置为95%。

问:为什么离网端没有输出?

答:对于离网电源,必须开启PV Master app上的"离网电源"。在离网模式下或当电网断电时,"离网输出开关"功能也必须打开。

注意:打开"离网输出开关"时,请勿重启逆变器或电池,否则该功能将自动关闭。

问:为什么电池SOC突然跳到95%?

答:一般是锂电池BMS通讯失败。如果电池进入浮充模式,SOC将自动重置为95%。

问:为什么电池一启动总是跳闸(锂电池)?

- 答:锂电池开关跳闸的通常原因如下:
- 1. BMS通信失败。
- 2. 电池SOC过低, 电池跳闸保护自己。
- 3. 电池连接侧发生电气短路。
- 上述原因排查完毕后仍有问题,请联系售后。

问:ES系列逆变器应该使用哪种电池?

答:ES系列逆变器可以外接标称电压为48V的可兼容锂电池。可兼容的锂电池请参考PV Master App中的电池列表。

关于 PV Master 运行和监控

问:为什么我不能在 PV Master App上保存设置?

答:可能是已与 Solar-WiFi* 断开连接。

- 1.确保您已经连接了Solar-WiFi*(确保没有连接其他设备)或路由器(如果将Solar-WiFi*连接到路由器)。App首页显示连接良好。
- 2. 在更改某些设置10分钟后重新启动逆变器,因为在正常模式下逆变器会每10分钟保存一次设置。 我们建议在逆变器处于等待模式时更改设置参数。

问: 为什么首页显示的数据与参数页显示的数据不同, 如充放电、PV值、负载值或电网值?

答:数据刷新频率不同,所以app不同页面之间,以及网页和app页面之间会出现数据不一致的情况。

问:为什么有些列显示NA,例如电池SOH等?

答:NA表示由于通信问题,例如电池通信问题,逆变器和app之间的通信问题,app没有从逆变器或服务器接收数据。

关于智能电表和防逆流功能

问:如何开启输出防逆流功能?

- 答:对于ES系统,该功能可以通过以下方式实现:
- 1.确保智能电表连接和通信良好。
- 2.开启防逆流功能,在App上设置到电网的最大输出功率。
- 注意:即使输出功率限制设置为0W,输出到电网的功率仍可能存在最大100W的偏差。

问:为什么我设置功率限制为0W后仍然有功率输出到电网?

答:输出限制理论上可以是0W,但是对于ES系统会有50-100W左右的偏差。

问:可以使用其他品牌的电表来代替ES系统中的智能电表或者修改智能电表的一些设置吗?

答:不能,因为逆变器和智能电表集成了通讯协议,其他品牌的电表是不能通讯的。此外,任何手动设置更改都可能导致电表通信故障。

问:智能电表上允许通过CT的最大电流是多少?

答:最大电流为120A。

其他问题

问:有没有让系统快速开始工作的方法?

答:请参考《ES快速安装说明》和《PV Master App用户手册》。

问:Back-up侧可以连接什么样的负载?

答:请参阅用户手册的第12页。

问:如果在某些特殊情况下未100%按照用户手册中的说明安装或操作,逆变器的保修是否仍然有效?

答:一般情况下,对因不遵守用户手册说明而导致的问题我们仍会提供技术支持,但不能保证仍可退换货。所以如果有特殊情况不能100%按照说明操作,请联系售后咨询。

4.3 免责声明

ES系列逆变器需在合适的环境和电气条件下运输、使用和操作。在下列情况下,制造商有权不提供售后服务或协助:

- 逆变器在运输过程中损坏。
- 逆变器已过保修期, 未购买延长保修期。
- 未经制造商授权以不当方式安装、改装或操作逆变器。
- 未经制造商授权, 在本用户手册中提及的不当环境或技术条件下安装或使用逆变器。
- •违反本用户手册中提到的要求安装或配置逆变器。
- 违反本用户手册中提到的要求或警告安装和操作逆变器。
- 逆变器因任何不可抗力如闪电、地震、火灾、风暴和火山爆发等损坏。
- 未经制造商授权擅自拆卸、更改或更新逆变器的软件或硬件。
- 逆变器安装、使用或操作违反了任何国际政策和法规或当地政策和法规。
- 连接任何不兼容的电池、负载或其他设备至ES系统。
- 注:制造商保留对本用户手册中所有内容的解释权。为保持防护等级IP65,逆变器必须 密封良好。请在开箱后一天内安装逆变器,否则请将所有未使用的端子/孔密封, 未使用的端子/孔禁止打开,确认没有水或灰尘进入端子/孔。

维护

逆变器需要定期维护,详情如下:

- 在维护之前, 确保逆变器与所有直流和交流电源完全隔离至少5分钟。
- 散热片:请每年用干净的毛巾清洁散热片。
- 扭矩: 请每年使用扭矩扳手拧紧交流和直流接线连接。
- 直流断路器: 定期检查直流断路器, 每年连续启动直流断路器10次。
- •操作直流断路器将清洁触点并延长直流断路器的使用寿命。
- •防水板:检查RS485等部件的防水板是否每年更换一次。

4.4 技术参数

技术参数	GW3648D-ES	GW5048D-ES				
电池输入参数						
电池类型*1	锂印	电池				
额定电池电压 (V)	48					
电池电压范围 (V)	40-	~60				
最大持续充电电流 (A)*1	75	100				
最大持续放电电流 (A)*1	75	100				
最大充电功率(W)	3,600	4,600				
最大放电功率(W)	3,600	4,600				
光伏输入参数						
最大输入功率(W)*1	4,600	6,500				
最大输入电压(V)*2	58	30				
MPPT电压范围 (V)	125-	~550				
MPPT满载电压范围 (V) *3	140~500	190~500				
启动电压(V)	12	25				
额定输入电压(V)	36	60				
每路MPPT最大输入电流(A)	14/14 or	r 11/11*5				
每路MPPT最大短路电流(A)	17.5/17.5 or	r 13.8/13.8 ^{*5}				
光伏阵列最大反灌电流(A)	()				
MPPT数量	2					
每路MPPT输入组串数		1				
并网输出参数						
额定并网输出视在功率 (VA)*7	3,680	5,000				
最大并网输出视在功率 (VA)*2	3,680	5,000				
电网买电额定视在功率 (VA)	7,360	9,200				
最大输入视在功率 (VA)	7,360	9,200				
额定输出电压(V)	23	30				
输出电压范围(V)	0~3	300				
额定输出电压频率(Hz)	50,	/60				
电压频率范围(Hz)	45	~65				
最大并网输出电流(A)	16.0*8	24.5				
最大输入电流(A)	32.0	40.0				
功率因数	~1(0.8超前	.0.8滞后可调)				
总电流波形畸变率	<3%	<3%				
离网输出参数						
离网额定视在功率(VA)	3,680	4,600				
最大输出视在功率 (VA)*3	3,680 (5,520@10sec)	4,600 (6,900@10sec)				
额定输出电流 (A)	16.0	20.0				
最大输出电流(A)	16.0	20.0				
额定输出电压 (V)	230 (±2%)					
额定输出电压频率 (Hz)	50/60 (:	±0.2%)				
总电压波形畸变率(@线性负载)	<3	3%				
效率						

日上放弃	07.60/						
最大效率	97.6%						
欧洲效率	97.0%						
电池侧 ⇄ 交流侧最大效率	94.0%						
MPPT效率	99.9%						
保护							
绝缘阻抗检测	Integrated						
残余电流监测	Integrated						
输入反接保护	Integrated						
防孤岛保护	Integrated						
交流过流保护	Integrated						
交流短路保护	Integrated						
交流过压保护	Integrated						
基本参数							
工作温度范围(°C)	-25~+60						
相对湿度	0~95%						
最高工作海拔 (m)	3000						
冷却方式	Natural Convection						
人机交互	LED, APP						
BMS通讯方式 ^{*4}	RS485, CAN						
电表通讯方式	RS485						
监控方式	WiFi						
重量 (kg)	28.0 30.0						
尺寸(宽×高×厚mm)	516×440×184						
噪音 (dB)	<25						
拓扑结构	非隔离型						
夜间自耗电(W)	<13						
防护等级	IP65						
直流连接器	MC4 (4~6 mm²)						
交流连接器	UW10端子排						
环境等级	4K4H						
过电压等级	DC II / AC III						
保护等级	I						
存储温度 (°C)	-40~+85						
	电池: A						
 决定电压等级	PV: C						
TO THE GALL	AC: C						
 	COM: A						
安装方式	壁挂安装						
安全使用寿命(年)	≥25						
电网类型	单相 TN/TT 系统						
认证 ^{*6}							
电网标准	VDE-AR-N 4105, VDE 0126-1-1, EN 50549-1, G98, G100, CEI 0-21, AS/NZS4777.2, NRS 097-2-1						
安规标准	IEC62109-1&2, IEC62040-1						
ЕМС	EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4, EN 61000-4-16, EN 61000-4-18, EN 61000-4-29						

- *1:实际充放电电流也取决于电池。
- *2: VDE 0126-1-1 &VDE-AR-N4105 &NRS 097-2-1:4600, CEI 0-21(GW5048D-ES):5100; CEI 0-21(GW3648D-ES):4050.
- *3: 只有光伏侧和电池侧电量足够时才能达到。
- *4: 默认配置CAN通讯。如果使用485通讯,请更换相应的通讯线。
- *5:请以铭牌为准。
- *6: 未列出所有认证和标准,详情请查看官网。
- *7: VDE 0126-1-1 &VDE-AR-N4105 &NRS 097-2-1:4600, CEI 0-21(GW5048D-ES):4600.
- *8: CEI 0-21:18.

4.5 其他测试

根据澳大利亚要求,在THDi测试中,应在逆变器和市电之间添加Zref。

RA、XA 用于L导体

RN、XN用于N导体

Zref:

RA=0, 24; XA=j0,15 at 50Hz;

RN=0, 16; XN=j0,10 at 50Hz

4.6 避免危险快速检查清单

- 1. 请勿将逆变器安装在易燃、易爆或强电磁设备附近,参考06页。
- 2. 记住这个逆变器很重,从包装中取出时请小心,参考第07页。
- 3. 在连接电池与逆变器之前,确保电池断路器闭合且电池标称电压符合ES要求,并确保逆变器与光 伏和交流电源完全隔离,参考第09页。
- 4. 在连接交流电缆之前,确保逆变器与任何直流或交流电源完全隔离,参考第11页。
- 5. 在连接智能电表&CT之前,确保交流电缆与交流电源完全隔离,参考第15页。

附录:保护等级定义

33

过电压分类定义

l级过电压	适用于连接到采取措施将瞬态过电压限制在低水平的电路的设备。
II级过电压	适用于不永久连接到固定设施的设备。例如,器具、便携式工具和其他插入式设备。
Ⅲ级过电压	适用于固定安装时永久连接的设备(即装在电源配电盘下游的设备,包括配 电盘本身)。例如,开关和工业安装中的其他设备。
IV级过电压	适用于开始安装时已经永久连接的设备(即装在电源配电盘上游的设备)。 例如,电表、初级过流保护设备和其他直接连接到户外电线的设备。

潮湿场所等级定义

	等级							
湿度参数	3K3	4K3	4K4H					
温度	0~+40°C	-33~+40°C	~20~+55°C					
湿度	5%~85%	15%~100%	4%~100%					

环境等级定义

环境情况	外部温度	相对湿度	适用于
室外	-20~50°C	4%~100%	PD3
室内,不受调节的	-20~50°C	5%~95%	PD3
室内,受调节的	0~40°C	5%~85%	PD2

污染等级定义

污染等级一	无污染或仅有干燥的非导电性污染。	
污染等级二	一般情况仅有非导电性污染,但是必须考虑到偶然由于凝露造 成短暂的导电性。	
污染等级三	有导电性污染,或由于预期的凝露使干燥的非导电污染变成导 电性的。	
污染等级四	造成持久性的导电性污染,例如由于导电尘埃或雨雪所造成的 污染。	

34